cAMP-mediated regulation of neurotrophin-induced collapse of nerve growth cones.

نویسندگان

  • Q Wang
  • J Q Zheng
چکیده

Neurotrophins are known to promote the survival, differentiation, and neurite outgrowth of developing neurons. Here we report that acutely applied brain-derived neurotrophic factor (BDNF) induces rapid growth cone collapse and neurite retraction of embryonic Xenopus spinal neurons in culture. The collapsing effect of BDNF depends on the activation of Trk receptor tyrosine kinase, requires an influx of extracellular Ca2+, and is regulated by cAMP-dependent activity. Elevation of intracellular cAMP levels ([cAMP]i) by forskolin or (Sp)-cAMP completely blocked the collapsing effect, whereas inhibition of protein kinase A (PKA) by (Rp)-cAMP potentiated the collapsing action. BDNF-induced growth cone collapse was only observed in 6 hr cultures but not in 24 hr cultures. However, inhibition of PKA by (Rp)-cAMP restored the collapsing response of these "old" neurons in 24 hr cultures, suggesting that embryonic Xenopus spinal neurons may upregulate their endogenous cAMP-dependent activity during development in culture, leading to the blockade of their collapsing response to BDNF. Taken together, our results suggest the presence of cross-talk between Ca2+- and cAMP-signaling pathways involved in the collapsing action of neurotrophins, in which the cAMP-pathway regulates the Ca2+-mediated signal transduction required for BDNF-induced collapse. By modulating the cAMP-dependent activity through the intrinsic programming or interaction with other factors present in the environment, a neuron thus could respond to the same extracellular factors with different morphological and cellular changes at different stages during development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurotrophin Regulation of β-Actin mRNA and Protein Localization within Growth Cones

Neurotrophins play an essential role in the regulation of actin-dependent changes in growth cone shape and motility. We have studied whether neurotrophin signaling can promote the localization of beta-actin mRNA and protein within growth cones. The regulated localization of specific mRNAs within neuronal processes and growth cones could provide a mechanism to modulate cytoskeletal composition a...

متن کامل

-Actin mRNA and Protein Localization within Growth Cones

Neurotrophins play an essential role in the regulation of actin-dependent changes in growth cone shape and motility. We have studied whether neurotrophin signaling can promote the localization of b -actin mRNA and protein within growth cones. The regulated localization of specific mRNAs within neuronal processes and growth cones could provide a mechanism to modulate cytoskeletal composition and...

متن کامل

Semaphorin 3F antagonizes neurotrophin-induced phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase signaling: a mechanism for growth cone collapse.

Peripheral nerve growth is regulated by the coordinated action of numerous external stimuli, including positively acting neurotrophin-derived growth cues and restrictive semaphorin cues. Here, we show that Semaphorin 3F (Sema 3F) can antagonize nerve growth factor (NGF)-stimulated TrkA (tyrosine receptor kinase A) signaling in sympathetic neurons, thereby apparently contributing to growth cone ...

متن کامل

Nerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility.

Neurotrophins and semaphorin 3A are present along pathways and in targets of developing axons of dorsal root ganglion (DRG) sensory neurons. Growth cones of sensory axons are probably regulated by interaction of cytoplasmic signaling triggered coincidentally by both types of guidance molecules. We investigated the in vitro interactions of neurotrophins and semaphorin 3A (Sema3A) in modulating g...

متن کامل

Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac.

Growth of axons and dendrites is a dynamic process that involves guidance molecules, adhesion proteins, and neurotrophic factors. Although neurite extension is stimulated by the neurotrophin nerve growth factor (NGF), we found that the precursor of NGF, proNGF, induced acute collapse of growth cones of cultured hippocampal neurons. This retraction was initiated by an interaction between the p75...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 13  شماره 

صفحات  -

تاریخ انتشار 1998